The co-chaperones Fkbp4/5 control Argonaute2 expression and facilitate RISC assembly.
نویسندگان
چکیده
Argonaute2 (Ago2) protein and associated microRNAs (miRNAs) or small interfering RNAs (siRNAs) form the RNA-induced silencing complex (RISC) for target messenger RNA cleavage and post-transcriptional gene silencing. Although Ago2 is essential for RISC activity, the mechanism of RISC assembly is not well understood, and factors controlling Ago2 protein expression are largely unknown. A role for the Hsc70/Hsp90 chaperone complex in loading small RNA duplexes into the RISC has been demonstrated in cell extracts, and unloaded Ago2 is unstable and degraded by the lysosome in mammalian cells. Here we identify the co-chaperones Fkbp4 and Fkbp5 as Ago2-associated proteins in mouse embryonic stem cells. Pharmacological inhibition of this interaction using FK506 or siRNA-mediated Fkbp4/5 depletion leads to decreased Ago2 protein levels. We find FK506 treatment inhibits, whereas Fkbp4/5 overexpression promotes, miRNA-mediated stabilization of Ago2 expression. Simultaneous treatment with a lysosome inhibitor revealed the accumulation of unloaded Ago2 complexes in FK506-treated cells. We find that, consistent with unloaded miRNAs being unstable, FK506 treatment also affects miRNA abundance, particularly nascent miRNAs. Our results support a role for Fkbp4/5 in RISC assembly.
منابع مشابه
Stability of Recombinant Proteins in Escherichia coli: The Effect of Co-Expression of Five Different Chaperone Sets
Chaperones are produced by prokaryotic, yeast and higher eukaryotic cells for various purposes. Over-expression of each chaperone or sets of them affect the production level of a recombinant protein in the cell. On the basis of this hypothesis, five different plasmids with 5 different combinations of 6 chaperones molecule, transformed into Escherichia coli along with human basic Fibroblast Grow...
متن کاملHsp90 cochaperones p23 and FKBP4 physically interact with hAgo2 and activate RNA interference–mediated silencing in mammalian cells
Argonaute proteins and small RNAs together form the RNA-induced silencing complex (RISC), the central effector of RNA interference (RNAi). The molecular chaperone Hsp90 is required for the critical step of loading small RNAs onto Argonaute proteins. Here we show that the Hsp90 cochaperones Cdc37, Aha1, FKBP4, and p23 are required for efficient RNAi. Whereas FKBP4 and p23 form a stable complex w...
متن کاملHuman RISC Couples MicroRNA Biogenesis and Posttranscriptional Gene Silencing
RNA interference is implemented through the action of the RNA-induced silencing complex (RISC). Although Argonaute2 has been identified as the catalytic center of RISC, the RISC polypeptide composition and assembly using short interfering RNA (siRNA) duplexes has remained elusive. Here we show that RISC is composed of Dicer, the double-stranded RNA binding protein TRBP, and Argonaute2. We demon...
متن کاملArgonaute2 expression is post-transcriptionally coupled to microRNA abundance.
Argonaute proteins are essential components of microRNA (miRNA)- and small interfering (siRNA)-mediated post-transcriptional gene-silencing pathways. In mammals, Argonaute2 (Ago2) is the catalytic center of the RNA-induced silencing complex (RISC) that recognizes and endonucleolytically cleaves messenger RNAs of complementary sequence. Although Ago2 is essential for RISC activity, the mechanism...
متن کاملPassenger-Strand Cleavage Facilitates Assembly of siRNA into Ago2-Containing RNAi Enzyme Complexes
In the Drosophila and mammalian RNA interference pathways, siRNAs direct the protein Argonaute2 (Ago2) to cleave corresponding mRNA targets, silencing their expression. Ago2 is the catalytic component of the RNAi enzyme complex, RISC. For each siRNA duplex, only one strand, the guide, is assembled into the active RISC; the other strand, the passenger, is destroyed. An ATP-dependent helicase has...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- RNA
دوره 19 11 شماره
صفحات -
تاریخ انتشار 2013